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A numerical model that allows the study of the nonstationary temperature field of a metal barrier in the 

vicinity of a crater formed due to inelastic impact of a solid spherical particle is considered. 

It was found in a s tudy of the mechanism of gas-abrasive erosion of metals and alloys that introduct ion of 

a barr ier  for colliding particles into surface layers can cause a considerable local increase in t empera ture  [1 ]. This  

is associated with conversion of a certain portion of the kinetic energy to heat.  In [2 ] it was assumed that  local 

heat ing up of material  layers adjacent to the contact surface leads to softening of the layers  and then to erosion 

failure. 

In [1 ], a quantitative evaluation of local heating up of metals for a limiting case - adiabatic condit ions on 

the assumption that the entire kinetic energy of a particle that it possesses directly before impact converts to heat  

- is given. At the same time it was noted that  the value of the maximum heating up of the surface layers  of the 

material  depends greatly on the heat  outflow into the depth of the body by heat conduction.  However,  the authors  

of [1 ] did not take this fact into account. 

At the same time it is known that  in the process of inelastic impact of a particle against a solid surface 

1 - 1 0 %  of the kinetic energy is spent on recoil, 1 - 5 %  is scattered in the form of elastic waves, and 90% passes 

to energy of plastic deformation of the barr ier  (about 7 5 - 8 0 %  converts to heat,  and the remaining portion is 

conserved in the deformed material in the form of latent energy) [3, 4 ]. 

With this fact and the importance of the dependence  of the thermophysical  properties of the barr ier  on the 

tempera ture  in mind, we can formulate  the aim of the present paper: the determinat ion of the nons ta t ionary  

tempera ture  field with account for such factors as the size of the particle, its densi ty,  elasticity modulus,  and velocity 

of impact on the one hand and the mechanical and thermophysical  properties of the barr ier  material  on the other.  

The  following assumptions are used: 

1) a smooth spherical solid particle of radius rp and density pp is accelerated by a gas-carr ier  flow, as is 

observed in the corresponding experimental  setups for s tudying gas-abrasive erosion [5 ], and collides with the 

plane horizontal surface of a metal specimen at a right angle with a velocity Wp; it is implied that  Young's  modulus 

El  and the Poisson coefficient vl of the particle material are set; 

2) the impact is inelastic; heating of the particle is d isregarded due to its small mass compared to the mass 

of the barrier;  

3) Young's modulus E2 and the Poisson coefficient v2 of the material  of the specimen and its thermophysical  

properties as a function of the temperature  are known; 

4) in introduction of a particle into the specimen body a crater  is instantaneously formed,  the cra ter  has 

the shape of a spherical segment with a surface area S = 2azrph through which 75% of the difference in the kinetic 

energy of the falling and recoiling particle is t ransferred in the form of heat during the period of plastic indentat ion 

~p; for this purpose the momentum of the heal flux density as a function of time (at 0 < T <__ Tp) is set on the surface 

of the crater; 

5) af ter  a lapse of time Tp the heated surface transfers heat to the surrounding medium by radiat ion and 

convection, and the latter,  due to the jet flow of gas along the surface, is forced; 
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Fig. 1. Schematic illustrating the formulation of the problem. 

6) at the initial instant  of time the temperature  field is uniform; 

7) the specimen body is semibounded with respect to heat,  i.e., Fo < 1 [6 ]; 

8) conforming to the fact that the diameter  of the particle is much smaller than the size of the solid body 

and allowing for the geometric symmetry ,  we assume that at any instant of time the tempera ture  field is the same 

for any vertical plane passing through the lower point of a spherical segment (a crater) .  

Since the tempera ture  field is independent  of the longitude, the problem is reduced to the solution of the 

differential equation of nonsta t ionary heat conduction: 

p ( t )  c ( t )  o r _  1 0 r 2 2 ( t )  Ot + 2 s in~o2( t )  . (1) 
Or r 2 Or r sin ?9 0,p 

Here (see Fig. I) r is the polar radius issuing from the center  of the spherical particle at the instant  of its contact  

with the barr ier  in impact (r o <_ r <_ (rp + l); l is the l inear size of the body de termined  by the condition that  Fo 

= 3tr / (pc l  2) < 1); and ~o is the angle between the polar radius and the vertical axis passing through the center  of 

the sphere,  0 ___ ~o < % where 

arccos (rp --- h i  
~P = ~rp + l ) "  (2) 

Due to the symmet ry  of the temperature  field with respect to the vertical OD,  the calculation is made  for 

half of the cross section, for which a computational grid is constructed as shown in Fig. 1. 

The  boundary-va lue  conditions include the initial condition 

t (r, ~o, 0) = tin (3) 

and boundary  conditions. The  first condition is set on the surface of the crater  (line BC in Fig. 1): 

78 , [ /2 ] 
q = Srp 2~ exp k rp - 3.9 / 2  at 

where Vp is de termined by the formula 17 ] 

rp = :rrp ~/ p p / ( 1 8 Y d )  . 

0 < Z --< Z'p, (4) 

(5) 
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The  depth of the indentat ion is calculated from the expression [1 ] 

(6) 

and,  as a consequence,  the surface area of the crater  is 

S = 23: rpWp ; (7) 

the coefficient of rest i tution e = w'o/w p (W'p is the velocity of the recoiling particle) is found from the equation [7 ] 

2 2Jr ppWp 

3Yd 

- 1 / 8  

(8) 

where 

-' 
e ,  + e2 ) (9) 

With account for the assumptions made,  the quantity of heat Q supplied to the body dur ing the t ime of impact is 

expressed as 

3 
4 ~ro 2 (10) 

Q = 0.75-~pp 2 Wp (1 - e2).  

It is important  to note that Q and q (formula (4)) are related by the equation 

At z > Tp 

q S d T =  f - - e x p  -- - -3 .9  / 2  d ~ = Q .  (11) 
o o 

-- 2 ~r  rp = aef f (trp -- tg),  (12) 

where  aef f is the effective coefficient of heat  transfer,  aef f = aco n + ara d. Th e  coefficient of heat  t ransfe r  by 

convection aco n is calculated by the formula presented for the given case in [8 ], and the coefficient of heat  t ransfer  

by radiation is calculated by the formula 

ara d = ea 0 (Tr4p- r ~ ) / ( T r p -  Tg).  (13) 

The  second boundary  condition is set on the plane surface of the specimen (line AB in Fig. 1): 

(0l) 
- 2 ~r  rp = aef f (trp - tg) cos T ; (14) 

the third on the boundary  CD at rp _< r < (rp + l): 

F 
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and the fourth on the boundary AD: 

t = tin" (16) 

The Kirchhoff substitution [9 ] 

t 0,I, ( 0  
1 f a ( 0 a t  2 o = a ( t )  

~, (t) = ~o  to ' 0t 
(17) 

(;1-0 is the coefficient of thermal conductivity at some fixed temperature to) and the Goodman substitution [9 ] 

t Oh (t) = c' (t). (18) h(t)= f p(t)r ot 
to 

are used. 
Substituting for each material of the barrier a specific function ~(t) obtained on the basis of reference data 

into integral (17) and calculating this integral, it is not difficult to find an expression for the function ~( t )  and 

then for the inverse function t (~) .  Similarly, the functions h(t) and t(h) are found by integral (18). 

With account for relations (17) and (18) Eq. (1) is written in the form 

Oh 20 / (02r + 2 0r + COS T 1 O~ 1 02~ ' (19) - + - -  

or r Or sin T r 0 T r 2 079 2 

To solve Eq. (19) numerically by an explicit method, a computational grid with uniform steps Ar and A T 

in radius r and angle T, respectively, is constructed. Setting the number  of radii N in the range between rp and 

rp + l, we can find 

A T = 2 ~ p / ( 2 N -  3) .  (20) 

In choosing the step Ar we must satisfy the condition 

Ar<- ( rp -h) /cos  [ ( j n - 3 )  AT] , 

where in is the number  of the radius that is the first to intersect the boundary AB (Fig. 1). 

The coordinates of the nodes can easily be expressed in terms of the steps mentioned: 

r i= rp + A r ( i -  1), 

(21) 

(22) 

w h e r e i =  1 , 2  . . . . .  M ( M = N - j n +  2), 

~oj = (j - 1.5) a~o,  (23)  

where ./= 1, 2 . . . . .  N. 
Formula (23) also reflects the fact that additional nodal points lying on the radius . /=  1 are used, and here 

the radius is spaced from the vertical OD at an angle equal to - A T / 2  (see Fig. 1). This approach corresponds to 

the recommendation given in [10 ]. 
The time step A~ is taken so that its value could simultaneously satisfy the requirements of stability of the 

computational scheme at the inner nodes and on the boundary ABC [6 ]: 

A r < O . 2 5 / m a x { 2  I 5 +  l(riAT)21} ' (24) 
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Ar < O.5/maX {~p [--~r2 + l (rj_Jn+2 A~o)2] (2 + Bi ) (25) 

Then  the time of the real process is T = kAT, where k = 0, 1, 2 . . . . .  

To  u n d e r t a k e  the calculat ion of the t empera tu re  field one  first de t e rmines  the initial reca lcula t ion  

temperatures  and specific enthalpies. For this purpose the temperature / in  is subst i tuted into the known functional  

relations �9 -- ~ ( t )  and h = h(t), thus obtaining equal values of ~0  and ho for all nodes. Having thus formed the 

ar rays  ~i,j,O and hi,j, 0 for the instant of time z = 0, one passes over to the calculation of them at the next  instant  
of t i m e T = A z  ( k =  1). 

The  enthalpy at the inner nodes is found by Eq. (19) reduced to a f ini te-difference form: 

-- 2 dPi+ 1 ,j,k -- dPi- 1 ,j,k hi,j,k+l = hi,j,k + ,,].OA r dPi+l,j,k 2dPi,j,k + dPi-1,j,k + _ 
Ar 2 r i Ar 

+ 
m _ fl) COS 99] L dPi,j+l,k dPi,J - l , k  + (I)i,J +l , k  2dPi,J ,k + i , j - l , k  

sin ~oj r~ 2A~o r 2 A~o 2 

+ 

(26) 

The  set of values hid,1 at the inner  nodes allows one to obtain the a r rays  ti,), 1 a n d  t~i,j ,  1 for this region 

using the functions t(h) and ~ ( t ) .  We present  the boundary  condition (4) in a f ini te-difference form: 

ir78k   /2] 7.8Q __L_I exp - 3.9 / 2  for 0 < k A T _ < r p .  (27) 

From expression (27) at k = 1 we find the value of the heat flux densi ty  ql for the instant  of time T = AT 

and then the recalculation temperatures  at the outer  nodes of the boundary  BC" 

Ar (28) 
~l , j , l  = ~2,j,1 + ql -~00" 

Then,  using the functions t (~ )  and h(t),  we come to the arrays tld, l and  hi,j, 1 for the outer  nodes of the 

line BC. 
To find the arrays  hi,j, k and OPt,j, k at the nodes at the boundary  AB we use the a l ready found a r ray  

t2,j,l for the nodes lying in the body at a distance Ar from the boundary  AB. Addressing ourselves to the bounda ry  

condition (12), we present  it in finite differences: 

tl  ,j,k = 

Ar 
t2,j,k + C~I ,j,k ~t (t2,j,k) tg cos ~oj 

Ar 
1 + a I ,j,k ;t (tz,j,k) COS ~oj 

(29) 

From formula (29) at k = 1 we find the sought values t l , j ,  1 and, consequently,  (I~l,j,l, hl,j, 1 at the boundary  AB. 
Since the boundary  conditions (14), (15) are t ransformed to the form 

hi, l, k = hi,z, k and hM,j, k = hin, (30) 

respectively, then at k = 1 we obtain hi,l,1 = hi,2,1 at the nodes at the boundary  CD and hM,j,l = hin on the line AD. 
Clearly, knowledge of the enthalpies at the nodes on the lines CD and A D  implies that at these points the 

t e m p e r a t u r e s  1i,1,1 and (1~i,1,1, tM,j ,  1 and r a re  also known. 
By this procedure,  formation of the arrays  of temperatures,  recalculation temperatures ,  and volumetric 

enthalpies at all nodes of the computational grid for the instant of time k = 1 is completed. Then ,  all a r rays  with 
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Fig. 2. T ime  variat ion of the heat  flux densi ty  (curves 1, 3) on the surface of 

a cra ter  and  the t empera tu re  (curves 2, 4) of a point at a depth of 0.025 p m  

from the surface of indentat ion (radius j = 2): 1, 2) dp- -  100 p m ;  3, 4) 400. 

T, K; q/lO, MW/m2;  T, psec.  

the subscript  k + 1 are  reass igned the subscript  k, and the calculation proceeds according to the descr ibed scheme.  

On reaching a value z > rp, the bounda ry  condition (29) is replaced by a modif ied express ion (12): 

Ar 
t2d,k + ald,k )t (tz4,k) tg 

, ( 3 1 )  
tl ,Lk = Ar 

1 + a1,L~ ;t (tzd,k) 

and otherwise  the sequence of calculations remains  the same as at ~ < to. 

Calculat ions were made  for two mater ia ls  of the bar r ie r  with not iceably different  thermophys ica l  propert ies:  

steels 1 2 K h l 8 N 1 0 T  and St. 20 [11 ]. The  particle mater ial  is quartz sand.  

To  evaluate  the er ror  of numerical  de terminat ion of the t empera tu re  field, one version (a particle d i ame te r  

of 100 Izm, an impact  velocity of 50 m / s e c ,  the barr ier  mater ia l  is steel 1 2 K h l 8 N 1 0 T )  with a constant  t ime step 

Ar = 5 .10  - l l  sec and  twofold differing values of the radius step (Ar I = 5- 10 -8  m and Ar 2 = 2.5- 10 -8  m; here  A~o 1 

= 0.0463 rad and  A~o 2 = 0.0484 rad) was calculated twice. The  difference in t empera tu res  at points per ta in ing  to 

subsurface layers  of the cra ter  (where the sharpest  change in t empera tu re  takes place) turned out to be  small. For  

example ,  at a depth  of 0 . I / t m  it did not exceed 7 K. 

By the curves in Fig. 2 one can judge the change in the heat  flux densi ty  on the surface of the cra ter  and  

the surface t empera tu re  dur ing the t ime ~p of collision of particles of d i ame te r  100 and  400/~m with a ba r r i e r  made  

of steel 1 2 K h l 8 N 1 0 T .  T h e  curves ment ioned  are constructed for an impact  velocity of 100 m/sec .  

We pay  a t tent ion to the fact that  the max ima  of the heat  flux densi ty  in the cases considered (in accordance  

with relat ions (5),  (6), and  (9)) are  the  same  and occur at a t ime equal to half  the impact  duration: 0.054 psec  at 

a particle d i ame te r  of 100 p m  and  0.219 tzsec at a d i ame te r  of 400 p m .  However ,  the quant i ty  of hea t  Q / S  
t ransfer red  dur ing the t ime of impact  through unit surface of the cra ter  to the bar r ie r  body  amounts  to 2.654 I O / m  2 

with the smal le r  d iamete r  and  10.630 k J / m  2 with the larger  one. This  occurs due to the difference in the masses  

of the particles and  the surface areas  of the contact. Hea t ing-up  of the cra ter  surfaces differs for the same reason: 

at a d i ame te r  of 100 p m  the t empera tu re  reaches a max imum value equal to 961 K 0.066 psec  f rom the s tar t  of 

impact,  whereas  at a d iamete r  of 400/~m the max imum amounts  to 1489 K and comes later - in 0.26 psec.  It is 

character is t ic  tha t  the t empera tu re  m ax i m a  are  shifted to larger  values of t ime compared  to the cor responding  

ex t rema of the heat  flux densi ty.  

Curves 2 and  4 (Fig. 2) indicate that  af ter  lapse of the t ime of impact  (T > 0.I 12/~sec at a d i ame te r  of 100 

/~m and r > 0.438 psec  at a d iamete r  of 400 p m )  the surface of the indentat ion is still cooled due to both heat  

outflow to the depth of the body and radiat ion and convective t ransfer  to the sur rounding  medium.  
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Fig. 3. Time variation of the temperature  at points of the barr ier  body (steel 

12Khl8NIOT)  lying on the same radius ] -- 2 and at different  depths from 

the crater  surface: 1) 0.025/zm, 2) 0.1, 3) 0.35, 4) 0.75, 5) 1.45, 6) 2.2. 
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Fig. 4. Time variation of the heat flux density (curves 1, 2) on the crater  

surface and the temperature  (curves 3, 4) of a point at a depth of 0.025/~m 

from the indentat ion surface (radius j = 2) at a collision velocity of 100 m / sec  

of a 400-ktm-diameter particle: 1, 3) steel 12Khl8NIOT;  2, 4) steel St. 20. 

From the physical viewpoint it would be natural  to expect that not only the size of the particle but also the 

velocity of impact greatly affect heat ing-up of the barrier.  Calculations confirm this assumption. With an increase 

in the velocity of a particle having a diameter  of 100/~m from 50 to 200 m/sec  the quantity of heat  supplied to the 

body increases 17.5-fold with a simultaneous 4-fold growth of the contact surface area,  and as a result  the max imum 

temperature  of the surface increases from 634 to 1534 K. 

The  curves constructed in Fig. 3 for six points lying on the same radius (j = 2) and at different  depths  

from the crater  surface give a representat ion of the dynamics of heat ing-up and cooling of different  layers  of a 

barr ier  made of steel 12Khl8N10T.  These  curves were obtained for an impact velocity of 100 m / sec  for a particle 

with a diameter  of 400/~m. It becomes clear from a study of the position of the curves that the substantial  hea t ing-up 

of the surface layers to temperatures  of 1500-500  K propagates only to a depth of 2/zm. Moreover, it is obvious 

that the greater  the depth of the layer  position the greater  the time spent to reach a temperature  maximum. In fact, 

if we consider points at a depth of 0.025 ktm (curve I) and of 2.2 ~m (curve 6), then an ext remum is reached  in 

0.2/zsec for the first case and only in 0.4 Izsec for the second case (the durat ion of the impact is 0.438/~sec).  

Calculations made for the same conditions of impact but for a specimen made of steel St. 20 whose thermal  

conductivity differs substantially from that of steel 12Khl8N10T (with an increase in temperature  from 293 to 700 

K the coefficient of thermal  conductivity of steel St. 20 decreases from 51.91 to 31.82 W / ( m - K ) ,  whereas  the 

coefficient of thermal conductivity of steel 12Kh 18N 10T increases from 15.1 to 25.9 W / ( m .  K) [ 11 ]) indicate lesser 

heat ing-up of all layers. Thus,  at a depth of 0.025 fzm the largest value of the temperature  is 950 K and it is only 

330 K at a dep th  of 2.2 /~m, whereas  for steel 12KhlSNIOT the t empera tu re  maxima at these points are,  

correspondingly ,  1489 and 400 K. The  reason for the phenomenon observed is not only the higher  thermal  

conductivity of carbon steel but also the smaller amount  of heat supplied through the unit surface area of the contact 

during one and the same time of impact (the area below curve 2 amounts  to 74% of the area below curve I (see 
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Fig. 4)). Here one should bear in mind that, with the same amount of heat released in an impact of the same 

duration, due to the lower hardness of steel St. 20, a crater with a larger contact surface area is formed for this 

steel than for steel 12Khl8N10T. 
Thus, the suggested technique of calculation of the temperature field in the impact zone gives a more 

authentic picture of local heating-up of a metal compared to [I ], due to account for the temperature dependence 

of thermophysical properties of the material of the barrier in considering heat transfer inside the body and also 
due to use of boundary conditions that make it possible to allow for radiative and convective heat transfer to the 

surrounding medium. 

N O T A T I O N  

p, density of the material of the barrier; d 0, diameter of the particle; E~ and v l, Young's modulus and 
Poisson coefficient of the particle material; E', contact elasticity modulus; Yd, dynamic yield limit of the material 
of the target; H, hardness of the barrier; q, heat flux density; t and T, temperature; tin, initial temperature of the 

target body; tg, temperature of the gas; c and c', mass and volumetric true specific heat capacity, respectively; h, 

volumetric specific enthalpy; e, emissivity of the target surface; a0, Stefan-Boltzmann constant; ~,  angle limiting 

the dimesions of the body of the target for which the temperature field is calculated; A~, angle step; M, number 

of circles of the computational grid; k, number of the time step; Fo, Fourier number; Bi, Biot number. Subscripts: 

p, particle; d, dynamic; eft, effective; 0, basis temperature; in, initial value; g, gas. 
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